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ABSTRACT

The CELSS resource recovery system, which is a waste processing system, uses aerobic
and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible
biomass. Studies have been carried out using aerobic and anaerobic bioreactors to recover plants
nutrients and secondary foods from inedible crop residues. Crop residues contain significant
amount of nitrate. There are actually two major problems concerning nitrate: 1) both CELSS
biomass production and resource recovery consume large quantities of nitric acid, 2) nitrate
causes a variety of problems in both aerobic and anaerobic bioreactors. Previous studies with
aerobic biodegradation have experienced nitrogen losses through denitrification when low level
of dissolved oxygen are reached due the rapid organic matter degradation. During the anaerobic
biodegradation of inedible biomass, nitrate is converted to ammonia which reduces the system
capacity to convert the organic matter to volatile fatty acids and needs further downstream
processing steps to convert the ammonia back to nitrate. The nitrate anion causes several
problems in the resource recovery system in such a way that, removal prior to the process is
highly desirable.

The technique proposed to remove the nitrate from potato inedible biomass leachate and
to satisfy the nitric acid demand was a four compartment electrolytic cell. In order to establish
the electrolytic cell performance variables, a series of experiments were carried out using potato
crop residues aqueous leachate as the diluate solution. The variables studied were the potato
biomass leachate composition and electrical properties, preparation of compartment solutions to
be compatible with the electrolytic system, limiting current density, nutrients removal rates as a
function of current density, fluid hydrodynamic conditions, applied voltage, and process
operating time during batch-recirculation operation.

Results indicated that the limiting current density (maximum operating current density)
was directly proportional the solution electrical conductivity an a power function of the linear
fluid velocity in the range between 0.083 to 0.403 m/s. During the electrolytic cell once-through
operation, the nitrate, potassium, and other nutrients removal rates were proportional to the
current density and inversely proportional to fluid velocity. The removal of monovalent ions was
found to be higher than divalent ones. Under batch-recirculation operation at constant applied
voltage of 4.5 and 8.5 volts, it was found that the nutrient removal rates were independent of
applied voltage, but proportional to the ions concentration and operating time. From material
balances it was found that 2.2 moles of oxygen gas and 4.4 moles of hydrogen gas were produced
at the electrodes surfaces per mole of nitrate transferred.
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SUMMARY

The National Aeronautical and Space Administration (NASA) has been studying the
viability of Controlled Ecological Life Support System (CELSS) for long term space missions for
several years. The purpose of this system is to provide all the basic human needs required for life
support. The CELSS breadboard project is a large-scale integration system with two main
components, a full-scale Biomass Production Chamber (BPC) and the Resource Recovery
system. The BPC is a closed system where plants are grown under controlled hydroponic
conditions. The plants in CELSS generate oxygen, purified water, and produce edible foods.

The CELSS resource recovery system, which is a waste processing system, uses aerobic
and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible
biomass. Studies have been carried out using aerobic and anaerobic bioreactors to recover plants
nutrients and secondary foods from inedible crop residues. Crop residues contain significant
amount of nitrate. There are actually two major problems concerning nitrate: 1) both CELSS
biomass production and resource recovery consume large quantities of nitric acid, 2) nitrate
causes a variety of problems in both aerobic and anaerobic bioreactors. Previous studies with
aerobic biodegradation have experienced nitrogen losses through denitrification when low level
of dissolved oxygen are reached due the rapid organic matter degradation. During the anaerobic
biodegradation of inedible biomass, nitrate is converted to ammonia which reduces the system
capacity to convert the organic matter to volatile fatty acids and needs further downstream
processing steps to convert the ammonia back to nitrate. The nitrate anion causes several
problems in the resource recovery system in such a way that, removal prior to the process is
highly desirable.

The technique proposed to remove the nitrate from potato inedible biomass leachate and
to satisfy the nitric acid demand was a four compartment electrolytic cell. In order to establish
the electrolytic cell performance variables, a series of experiments were carried out using potato
crop residues aqueous leachate as the diluate solution. The variables studied were the potato
biomass leachate composition and electrical properties, preparation of compartment solutions to
be compatible with the electrolytic system, limiting current density, nutrients removal rates as a
function of current density, fluid hydrodynamic conditions, applied voltage, and process
operating time during batch-recirculation operation.

Results indicated that the limiting current density (maximum operating current density)
was directly proportional the solution electrical conductivity an a power function of the linear
fluid velocity in the range between 0.083 to 0.403 m/s. During the electrolytic cell once-through
operation, the nitrate, potassium, and other nutrients removal rates were proportional to the
current density and inversely proportional to fluid velocity. The removal of monovalent ions was
found to be higher than divalent ones. Under batch-recirculation operation at constant applied
voltage of 4.5 and 8.5 volts, it was found that the nutrient removal rates were independent of
applied voltage, but proportional to the ions concentration and operating time. From material
balances it was found that 2.2 moles of oxygen gas and 4.4 moles of hydrogen gas were produced
at the electrodes surfaces per mole of nitrate transferred.
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A = empirical constant
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b = empirical number, dimensionless
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C, = boundary layer solution ion concentration, Kg-equiv./m’
e = current efficiency, dimensionless
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J. = ion flux by electrotransport, Kg-equiv./s-m?

J,= ion flux by diffusion, Kg-equiv./s-m’

k = specific electrical conductivity, Mho/m

N, = diluate stream feed concentration, kg-equiv./m’
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t,, = ion transport number in solution, dimensionless

t, = ion transport number in membrane, dimensionless
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I. INTRODUCTION

The National Aeronautical and Space Administration (NASA) has been studying the
viability of Controlled Ecological Life Support System (CELSS) for long term space missions for
several years. The purpose of this system is to provide all the basic human needs required for life
support. The CELSS breadboard project is a large-scale integration system with two main
components, a full-scale Biomass Production Chamber (BPC) and the Resource Recovery
system. The BPC is a closed system where plants are grown under controlled hydroponic
conditions. The plants in CELSS generate oxygen, purified water, and produce edible foods.

The CELSS resource recovery system, which is a waste processing system, uses aerobic
and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible
biomass. Studies have been carried out using aerobic and anaerobic bioreactors to recover plants
nutrients and secondary foods from inedible crop residues. Crop residues contain significant
amount of nitrate. There are actually two major problems concerning nitrate: 1) both CELSS
biomass production and resource recovery consume large quantities of nitric acid, 2) nitrate
causes a variety of problems in both aerobic and anaerobic bioreactors. Previous studies with
aerobic biodegradation have experienced nitrogen losses through denitrification when low level
of dissolved oxygen are reached due the rapid organic matter degradation. During the anaerobic
biodegradation of inedible biomass, nitrate is converted to ammonia which reduces the system
capacity to convert the organic matter to volatile fatty acids and needs further downstream
processing steps to convert the ammonia back to nitrate. The nitrate anion causes several
problems in the resource recovery system in such a way that, removal prior to the process is
highly desirable.

1.1  BACKGROUND

Previous studies associated with the CELSS Breadboard project indicated that the water
soluble extract of inedible biomass have been suitable for use as plant nutrient source in
hydroponic systems (1,2). Water extraction or leaching, can be viewed as one step in an overall
biological oxidation scheme (3), or as a pretreatment of biomass to remove nutrient prior to
further treatment. Leaching was effective at removing the majority of nutrients from the inedible
biomass (2). The aqueous leachate contains both inorganic and organic molecules. Biological
pretreatment of leachate prior to its use in hydroponic systems have been recommended to both
reduce phytotoxic effects and to convert soluble organic to edible products in regenerative
systems (4). Based on the inorganic analyses of crop residues, leachate contains higher levels of
nitrate and potassium when compared to others nutrients (5). Three Intermediate-Scale Aerobic
Bioreactors have been designed, fabricated and operated (6). They utilized mixed microbial
communities to bio-degrade plant residues. It was determined that the soluble organic
compounds in the leachate were metabolized by microorganisms resident in the nutrient delivery
system. It was found that this lead to increase total root respiration, the development of
microbial biofilms on surfaces of roots and nutrient delivery system components, and increased
denitrification (conversion of nitrate to nitrogen) by the rhyzosphere microbial community. It
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was also observed that the aerobic decomposition of soluble organic compounds, the pH
increased from 6.5 to 8.5. To control the pH during crop residues decomposition, a 1 N nitric
acid solution was injected into the bioreactor.

Anaerobic digestion of inedible biomass is a natural occurring biological process in
which organic material is converted to reduce end products. The anaerobic decomposition of
solid organic wastes proceeds in two consecutive steps, liquification and methanogenesis (7,8).
The first phase of the anaerobic digestion is known as the acidigenic phase (volatile fatty acids
formation). In the second phase a second group of organisms, the methanogens, complete the
digestion process converting the volatile fatty acids to highly reduced CH, and CO,. The
presence of highly levels of nitrate in solution during the anaerobic decomposition of organic
matter conducts to the undesired formation of ammonia. The aerobic dinitrification process
consumes part of the medium dissolved oxygen, which is highly required to solubilize the
organic matter present. The undesired anaerobic decomposition of nitrate to ammonia needs
further nitrification process to convert back the ammonia to nitrate to be use as plant’s nutrient.

Many researchers (9, 10, 11, 12) have described processes for producing weak acids from
its salt via electrodialysis (ED), but do not address the process variables, €.g., the limiting current
density, the membrane fouling effect, and hydrodynamic conditions on the solution-membrane
mass transfer. Theoretical concepts and experimental research on the area of producing acids
from its salts and desalination of saline water by electrodialysis gives better understanding of the
process variables (9, 13, 14, 15, 16, 17). In a typical desalination system, the channels through
which saline water passes are made of alternating cation and anion permselective membranes.
The passage of a direct current through the stack of channels results in the depletion and
enrichment of the salt in the alternating compartments. The rate of ion transfer is proportional to
the current density. However, the current density at which the system can be operated is to a
large extent limited by the polarization which take place in the lialysate channels. Polarization is
a current saturation condition associated with a high ohmic resistance of the fluid because of the
decreased ionic concentration. Theoretically, the limiting current is reached when the ionic
concentration, which is lowest at the membrane surface, approaches zero. In practice, this is not
attained because water ions themselves enter the transfer process. It has been long understood
(13) that increasing the turbulence level in the fluid streams generally increases the limiting
current by means of decreasing the fluid boundary layer thickness. This results from the
increased rate of diffusion of ions towards the membrane surface to replenish those which have
been depleted. It is normal to operate practical systems under turbulent conditions, through not
excessively high Reynolds numbers, because of the associated higher pumping costs and inter-
spacers leaking. In, practice, the Reynolds number may be low enough to indicate that the flow
would be laminar, but turbulent promoters used result in a strong eddying motion.

Mass transfer through permselectives membranes consists of two steps:
1) the reduction of ionic concentration in the solution by electrotransport of ions from the
boundary layer near the membrane and 2) the diffusion of ions to the partially de-ionized
boundary layer. The kinetics of the first step is given by the Nernst equation
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J, =(t, - I F) 1)

where J, is the flux of ions by electrotransport, I is the current density, F is the Faraday’s number,
t, is the ion transport number in solution, and t_, is the ion transport number on membrane. The
second step is given by the Fick’s first law:

Jp = D(C-C)Id (2)

where Jj, is the flux of ions by diffusion, D the diffusion coefficient, C the ion concentration of
bulk solution, C, the ion concentration at the boundary layer, and § the thickness of the boundary
layer. The thickness of the boundary layer is a function of the fluid velocity and geometry of the
spacers (18). From the equations (1) and (2), the following can be derived:

i = DF(C-C)/b(t_-t) 3)

Increasing the voltage of the stack raises the current density. The flux of ions by electrotransport
is also increased until the concentration of the solution boundary layer approaches zero (C, = 0).
Under these conditions the flux of ions by diffusion is maximal; therefore, the current density is
the limiting one (i = i;,)

= DFC/3(t,-t) 4)

im

A further increase in J;, can be achieve only by raising the fluid velocity of the solution in the cell
to a level at which the pressure drop across the cell will not cause internal leakage. A further
increase in the stack voltage will raise the current density. Most of this additional current will
cause dissociation of water rather than mass transfer from the diluate cell compartment. When
the concentration of the solution in the boundary layer decreases, the electrical resistance of cell
dilate solution increases. Therefore, it is important that the current density be prevented from
approaching the limiting current-density value. A practical equation for limiting current density,
derived from empirical results and suggested by several authors (19,20} is

itk = AU? (5)

where U is the fluid velocity, A is an empirical constant number, b in an empirical number,
generally between 0.5 to 0.9, and k is diluate solution average specific electrical conductivity.

Material balances over the membrane area across the diluate solution is flowing through,
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and in which a direct current is being passed, the following equation can be obtained for a
electrolytic cell continuous mode of operation (9):

ln—— =

N, |F N, Q

(= )(——)(———)} (6)

From an empirically determined relationship between (I/N,) and the fluid velocity, values of
(I/N,) and A, may be chosen. For batch recirculation electrolytic cell mode of operation, it is
apparent that multiple passes through a single stack are equivalent as to passing the solution
through several stacks in series. The performance equation for a batch recirculation process is as
follow:

K/
Nnn

A Iny <—>k k] 7

Fle N,

If the process is carried out at constant average value of (I/Ny),y and assuming an average current
efficiency, e,, Eq. 7 can be simplified to:

1 Nf Pary [ Am
- (F (N) (E) (8)

pn

The value of (I/N,),, may be simulated partially by operating at a constant voltage determined
empirically from polarization studies.

Permselectives membranes for electrodialysis (ED) contain either group of positive ions
(anion-exchange membrane) or negative ions (cation-exchange membrane). In an applied
electric field and in aqueous solution of ions, an anion-exchange membrane permits the passage
of anions; a cation-exchange membrane permits the passage of cations only. The most important
characteristics of permselectives membranes used for ED are: low electrical resistance, good
permselective qualities for cations and anions, good mechanical stability, and high chemical
stability. A nitrate-specific anion-exchange membrane was prepared from chloromethylated
polysulfone by partially aminating it with a secondary amine for completion (21). When the
nitrate-chloride ratio in solution was equal, nitrate flux was larger than chloride by a factor of 1.6
in alkaline medium and a factor of 2 in acid medium. ‘

1.2 PROPOSED TECHNOLOGY

The technique proposed to remove the nitrate from potato inedible biomass leachate and
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to satisfy the nitric acid demand is a four compartment electrolytic cell (see Fig. 1). This cell
contains two cation and one anion permselectives membranes for defining the cell compartments.
The compartments are separate by means pf polypropylene tortous spacers which contains
turbulent promoters to enhance the mass transfer from the bulk solution to the membrane surface,
where the separation is carried out, thus permitting the cell to operate at a high current density.
When an electrical potential is applied to the electrolytic cell by mean of a power supply,
potassium ions and other cations move to the cathode while nitrate ions and other anions move to
the anode. At the cathode compartment potassium ions are combined with hydroxide ions
product of water electrolysis to produce potassium hydroxide. The electrolytic reduction of
water also produces hydrogen gas which may be used as a potential fuel. The nitrate ions
removed from the leachate compartment pass through the anion-exchange membrane to the nitric
acid compartment and combine with the hydrogen ions that come from the anode compartment to
enrich the nitric acid solution. At the anode compartment water oxidizes under acid conditions
and produces oxygen gas and hydrogen ions. Oxygen gas may be use to satisfy any human being
needs, as well as, to be combined with hydrogen gas for energy purposes.

NITRATE H
0, NITRIC ACID LEACHATE KbH
H,SO, (Pmiuct) (Re?duc) T
+ K o [H—:}> > Kkt o - o
+ > Z > Q
b & 3 S = N
z ¥ Z NO. 12 -
BN [HY Z| z NO, o
8 ,+ = E =) = 1
B : <
5 sk > “foH] o,
= B i =
|
H;50, _NITRICACID  NITRATE KOH
ZN) (Concentrate Stream) LEACHATE (0.2N)
0.1 N) (Diluate Stream)

Fig. 1. Configuration of Electrolytic Cell

1.3  OBJECTIVES

The main objective of this summer project was to design, and test an electrolytic system
to remove nitrate from crop residues, as well as, to satisfy biomass production chamber (BPC)
and anaerobic and aerobic nitric acid demand. The potato crop residues was leachated and the
resultant leachate electrodialyzed to remove nitrate. In the design of this process, variables such
as current density, applied voltage, fluid hydrodynamic conditions and leachate ionic
concentration were correlated to optimize nitrate removal.
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II. EXPERIMENTAL SET-UP
2.1 ELECTROLYTIC CELL

The experimental system consists of a 0.23 x 0.25 m four compartments electrolytic cell
(Fig. 2). The electrodes are a stainless steel cathode and a titanium substrate plated anode. The
membranes selected were two heavy duty cation permselective membranes (Type 61-AZL-389,
from IONICS, Inc., Watertown, MA) and one anion permselective: membrane (Type 103-QZL-
386, from IONICS, Inc., Watertown, MA) . The separation between electrodes and cation
membranes and between membranes were done with polypropylene tortous path spacers that
contain the channeling and turbulent promoters. The thickness of electrodes spacers is 2 x 10° m
and the intermembrane spacer is 1 x 10° m. The open flow area is 6 x 10 m?® for intermembrane
compartments and 1.2 x 107 for electrodes compartments. The effective membrane area is 0.023

m?.
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{ STEEL ENDPLATE ]

| POLYPROPYLENE ENDBLOCK J

= ANODR (Ti/Pt) B
T " e YT —

! i ! Ul P TR
- CATHODE (S.S. " GASKET
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STEEL ENDPLATE |

N T

TT—TIE ROD

SPACERS

Fig. 2. Four Compartments Electrolytic Cell Construction

22  COMPARTMENTS SOLUTIONS AND HYDRODYNAMIC CONDITIONS

The cathode compartment feed solution was a 0.2 N KOH. The solution feed to the
compartment next to the cathode was a filtered potato leachate. The specific protocol for
leaching potato inedible ground biomass is elsewhere (1). An overview of the relevant
conditions were as follows: 1) loading rate of 50 g of biomass per liter of deionized water, 2)
duration time of 2 hr, 3) aeration rate of 20 LPM, and 4) rising with an equal volume of
deionized water in five separate washings. Then the leachate was filtered with a 200 pm
stainless-steel wire mesh to remove the suspended matter that may clog the electrolytic cell flow
channel. The composition of the leachate obtained by the previously mentioned method is shown
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in Table 1. The nitric acid feed solution was a 0.1 N HNO, and the anode feed solution was a 2
N H,SO,. The nitric acid and potassium hydroxide solutions were prepared in such a way, to
keep the ratio of the specific electrical conductivities of these solutions to the leachate solution
below 10 to prevent back diffusion and thus to avoid short circuit through the manifold
KnoyKieacnaie =34 Kxon/Kieachae = 4-2). The fluids velocities flowing through the tortous spacers
were varied from 0.083 to 0.403 m/s given Reynold’s numbers (based on the equivalent
hydraulic diameter of 1.714 x 10° m) of 142 to 691. The flowrates through the electrodes
compartments were doubled as compared to the leachate and nitric acid solutions which kept the
same fluid velocity.

Table 1. Potato Leachate Average Composition

Analysis Composition
Spec. Cond., pMho/cm | 8650
pH 5.81
NO,, mg/L 1474
PO,, mg/L 154

K, mg/L 2877
Cg, mg/L 7.5
Mn, mg/L 157.1
Fe, mg/L 4.26
Cu, mg/L 0.16
Mg, mg/L 0.95
Zn, mg/L 0.75
NH, 56.9
Cl, mg/L 70.4
TOC, mg/L 3039.8

2.3 LIMITING CURRENT DETERMINATION

The determination of the limiting current density (maximum operating current density)
was carried out by operating the system with the respective solutions under continuous operation
mode. A pH electrode, a specific electrical conductivity flow cell, and thermocouples were
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installed at the outlet of the potato leachate stream to monitor pH, specific electrical conductivity,
and temperature difference, respectively, as a function the applied current density and
hydrodynamic conditions. Also the applied voltage vs current density was monitored to
determine the cell electrical resistance.
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III. RESULTS AND DISCUSSION

3.1 ELECTROLYTIC CELL PRESSURE DROP

The electrolytic cell was tested for external leakage by pumping de-ionized water at room
temperature through each compartment at the same fluid velocity. As can be observed in Fig. 3.,
the pressure drop through the electrolytic cell increases rapidly with fluid linear velocity
(flowrate). At fluid velocities higher than 0.35 m/s external leakage was observed between
spacer-membrane junction. Thus, the maximum permissible flowrate is limited by high pressure
drop and external leakage. At a fluid velocity of 0.35 m/s, in which the external leakage began
the pressure drop, was approximately 66.2 kPa (9.6 psi). Therefore, it is also more economical to
operate below the maximum allowable pressure of 66.2 kPa.

Fig. 3. Electrolytic Cell Pressure Drop with Fluid Velocity
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3.2  POLARIZATION (LIMITING CURRENT DENSITY)

“Current density” in general is defined as the current per unit area of available membrane
through which the current passes. The effective membrane area of the electrolytic cell is of 0.023
m? (230 cm?). In solution electrical current is carried by ions, it is follow that more dilute the
solution the lower will be the current transmittal capacity of the solution. Application of too
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much voltage will result in ion starvation at the membrane-solution interface with the resultant
decomposition of solvent and/or other materials that may be present. This phenomenon is
referred to as polarization and manifest itself through pH disturbances in solution, increase in
electrical resistance, and loss of current efficiency. Consequently, the limiting current density is
the first operating variable that should be established experimentally.

Fig. 4. shows the applied voltage vs current relationship for the operation of the
electrolytic cell under continuous mode of operation at different fluid velocities ranging from
0.083 to 0.403 m/s. From the Ohm’s law (E = IR), the slope of the voltage-current relationship
at a given current is the cell electrical resistance. As can be observed in this figure the slope (cell
electrical resistance) is small at low current, but as current is increased there is current where it
suddenly changes from a finite value to almost infinity. The current at which this drastical
change occur is known as the maximum permissible current or limiting current. The limiting
current increases with increasing fluid velocity. As the fluid velocity is increased, the boundary
layer thickness decreases, thus higher permissible current can be used. The effect of increased
flow velocity included the enhancement of mass transfer, reduction of membrane fouling, and
therefore minimization of polarization. The average cell electrical resistance is approximately 2
ohms when the operation is carried out below limiting current conditions. When the cell
electrical resistance increases drastically some of the energy required to transport ions, dissipates
as heat due to the Joule heating effect (see Fig 5). Thus, this effect increases the fluid
temperature as it passes through the cell. It is suggested to operate at low temperature as possible
to avoid membrane overheating and thus, to maintain the chemical stability of the permselective
membranes for long period of operation. Most of the commercial polymeric-basis membranes
can be used for an extended period at a temperature up to 40°C, warmer operation entails a great
reduction of useful life. As can be observed in Fig. 6, the operation at current density higher than
the limiting one produce pH disturbances in the leachate stream, as well as, loss of current
density (leachate specific electrical conductivity is independent of current density). Thus, the
operation at current density higher than the limiting one will may result in decomposition of
solvent and other materials presented in the leachate. As the fluid velocity increases the pH
disturbances and loss of current efficiency are minimized by increasing the mass transfer of ions
from the solution bulk to the membrane interface. Fig. 7, shows the limiting current density as a
function of leachate fluid velocity. These data were correlated very well by the power function
model: i, = 576.41 U’ The resulting correlation coefficient obtained is 0.995. This
correlation agrees with the one suggested by several authors (19,20). Once the limiting current
density is known at a given fluid velocity, selection of operating current density below the
limiting one will warranty an optimum electrolytic cell performance. Due to the fluid velocities
range used (laminar flow conditions), the tortous path flow channels through which the solution
is passing appear to function as causing a degree of localized eddying rather than inducing
turbulence flow.
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Fig. 6. Leachate Effluent Specific Electrical Conductivity and pH vs
Current Density during Once-Through Continuous Operation
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Fig. 7. Effect of Fluid Velocity on Electrolytic Cell
Limiting Current Density
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33  ONCE-THROUGH CONTINUOUS OPERATION

This operation was carried by pumping the solutions once through the electrolytic cell
from feed tanks at a constant flowrate. As the diluting stream (leachate solution) passes through,
the electrolytic cell becomes more demineralized. The concentrating stream (nitric acid solution)
becomes more concentrated. In a continuous (once-through) operation the solution to be
processed was passed through the electrolytic cell only once. This is convenient when one
“pass” suffices to achieve the desired degree of demineralization.

Fig. 8 shows the leachate demineralization as a function of current density at a fluid
velocity of 0.083 m/s. As can be seen, the removal per pass of each nutrient contained in the
potato leachate increased with current density. The removal of nitrate, potassium, and chloride
ions are much higher than the other ions present. At low current density of 44 A/m® is possible to
remove up to 62.6% nitrate, 40.3% potassium, 26.5% chloride, 33.7% magnesium, 30.6%
manganese, 38.2% zinc, 9.41% iron, and 19.8% phosphate, respectively. Although the removal
of nutrients from potato leachate increase with current density, operation at current density higher
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than 108.7 A/m? (limiting current density) is not recommended due to excessive solution and
membrane overheating. Operation at the limiting current density condition is possible to remove
up to 92% nitrate, 92.5% potassium, 22.1% phosphate, 39.8% calcium, 71.4%magnesium, 39.9%
iron, 42.3% zinc, 56.7% manganese and 92.4% chloride. The removal of monovalent ions was
found to be higher than divalent ions because monovalent ions have higher mobility (current
transmittal capacity) than divalent ones. At current density higher than the limiting one the
removal of ions is almost independent of current density. At these conditions a big portion of
electrical energy is being spent to heat the solutions (joule heating effect). As the fluid velocity
is increased, the fluid residence time in the electrolytic cell decreases; therefore, lower
demineralization per pass is obtained (see Figure 9 and 10). Increasing the fluid velocity will
permit the operation at higher current density with minimum polarization, fouling, and solution
and membrane overheating. At a fluid a velocity of 0.25 m/s and operating at the lower current
density of 43.8 A/m? is possible to remove 12.4% nitrate, 6.2% potassium, 9.8% phosphate,
23.5% calcium, 9% magnesium, 6.4% iron, 10.4% zinc, 6.9% manganese, and 15.7% chloride,
respectively. While the operation at the limiting current density (239.13 A/m?) makes possible to
remove up to 74.7% nitrate and 46% potassium,; the operation at fluid velocity of 0.306 m/s and
limiting current density (260.9 A/m?) makes possible to remove up to 43.6% nitrate and 40.1%
potassium (see Fig 10). It is recommended to operate the electrolytic cell process at fluid
velocities between 0.20 to 0.25 m/s and current densities from 200 to 225 A/m?. Operation at
these conditions minimize solution and membrane overheating, as well as, polarization and
membrane fouling effects.

34. BATCH-RECIRCULATION OPERATION

In batch-recirculation operation of the electrolytic cell system, the solutions to be
processed were placed in their respective reservoir tanks. They were passed through the stack
and then recycled back to the reservoirs. Thus, the leachate solution became increasingly
depleted while the nitric acid solution became more concentrated. The electrolytic process was
considered complete when the nitrate content drop to desired degree.

Batch operation has the advantage that the process cycle can be geared toward the desired
end product and is relatively independent of the feed, the concentration of which may vary from
batch to batch. Even if the feed varies, batch recirculation is equivalent to operate a number of
electrolytic cell stack in series, with each stack receiving an increasingly depleted nitrate solution
and concentrated nitric acid solution feed.

There are two ways to operated the electrolytic cell under batch-recirculation mode of
operation, at constant-current and at constant-applied-voltage. The operation at constant-current
would seem attractive for assuring a constant rate of nitrate removal from potato leachate, but
this will be true only if the feed composition remain constant. One alternative is to operate so
that the cell current is constant and below the value of the initial limiting current. For part of the
process duration, the operating current lies below the limiting one, and this represents an under-
utilization of the system capacity. When the operating current exceeds the limiting one,
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secondary reactions begin, resulting in power wastage. Therefore, constant current operation is
impractical for use with batch-recirculation systems, which would be operated over a wide ionic
concentration range. This realization leads to the concept of using high current levels during the
initial part of the process and reduced levels when the ionic concentration of the leachate falls.
One way of accomplishing this, is to switch to a constant applied voltage operation. The
operation was carried out in two trials at constant applied voltages of 4.5 and 8.5 volts,
respectively. The reservoir tanks were charged with 2 liters of each solution. The flowrate was
adjusted to give a fluid velocity of 0.25 m/s for all the trials.

Fig. 10. Removal of Selected Nutrients from Potato Leachate
vs Current Density at U = 0.306 m/s
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Fig. 11 shows the current density versus time relationship for the batch-recirculation
operation at constant applied voltage conditions. At a constant applied voltage of 8.5 volts, the
current density declines rapidly during first the 20 minutes, and then levels off with a diminishing
rate for the remaining period of time. This occurred as consequence of a rapid demineralization
of the leachate at high current density. As the ionic concentration of the leachate diminishes, the
solution electrical resistance increases rapidly, thus to keep the same applied voltage, the current
density is itself adjusted to lower values. The operation at constant applied voltage of 4.5 volts,
required lower initial current density, thus the initial rate of demineralization was low enough to
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keep small variation of solution electrical resistance. After the period of 20 minutes of operation
the patterns of current density variation vs time at both applied voltages were very similar. This
means that the rate of demineralization is slow at low current density. As can be observed in Fig.
12, the specific electrical conductivity versus time at both applied voltages have a similar pattern.
The leachate solution electrical conductivity decreases with operating time as the leachate
solution is depleted. Also, as being seen in Fig. 13, the leachate solution pH decreases slowly
from 5.8 to 4.2 at E = 8.5 volts and from 5.7 to 4.53 at E = 4.5 volts. At a low applied voltage (E
= 4.5 volts), pH is more stable than at high applied voltage (E = 8.5 volts), which means a low
degree of water de-ionization or low polarization effect.

Figures 14 and 15 show the demineralization of potato leachate as function of time. The
initial rate of demineralization is high and then levels off. The initial rate of demineralization is
higher for two reasons; initially the leachate solution contains a high concentration of ionic
species and the initial current density is also high. As the leachate become more depleted, both
current density and the rate of nutrient removal decrease. The average rate of nutrient removal
was almost independent of applied voltages, but depends on operating time. During the
operation of the electrolytic cell at constant applied voltage of 4.5 volts for 158 minutes, made
possible to remove up to 92.1% nitrate, 26.5% phosphate, 79.2% potassium, 39.2% calcium,
68.2% magnesium, 38.5% iron, 38.8% copper, 48.2% manganese, 44% zinc, 88.7% chloride, and
22.7% TOC, respectively. Approximately the same overall removal was obtained when the
system was operated at constant applied voltage of 8.5 volts, but for a period of 148 min. As the
cations are transferred to the cathode compartment, the alkali concentration increases with time
(see Fig. 16). The concentration of alkali solution was found to change from 0.209 to 0.266 N
for the operation at 4.5 volts (27.3% conversion) and from 0.201 to 0.257 N at 8.5 volts (27.9%
conversion). The alkali formation is the product of the electrochemical reaction at the cathode
surface that produces hydroxide ions which are combined with the cations to form alkali
compounds. Also, as the anions are transferred to the nitric acid compartment, the acid
concentration was found to increase with time. The concentration of the acid solution in the
nitric acid compartment was found to increase from 0.098 to 0.151 N for the operation at 4.5
volts (54.1% conversion) and from 0.098 to 0.152 at 8.5 volts (55.1% conversion). From
material balances was found that the average oxygen gas (O,) produced at the anode surface
under acid condition was approximately 2.2 moles O,/mole NO, transferred. The average
production of hydrogen gas at the cathode surface was found to be approximately 4.4 moles
H,/mole NO, transferred.
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Fig. 11. Current density vs Time during Batch-Recirculation Operation
at Constant Applied Voltages and U = 0.253 m/s
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Fig. 13. Leachate Solution pH during Batch-Recirculation Operation

at Constant Applied Voltages and U = 0.253 m/s
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Fig. 14. Nutrient Removal during Batch-Recirculation Operatio
at E = 4.5 volts and U = 0.253 m/s
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Fig. 15. Nutrient Removal during Batch-Recirculation Operation
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Fig. 16. Nitric Acid and Potassium Hydroxide Concentration vs Time

during Batch-Recirculation Operation at Constant Applied
Voltages and U = 0.253 m/s
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IV. CONCLUSIONS

The limiting current density (maximum operating current density) was found to be
directly proportional the solution electrical conductivity an a power function of the linear fluid
velocity in the range between 0.083 to 0.403 m/s. The operation at current density higher than
the limiting one, results in pH disturbances which may decomposes pH sensitive leachate
components, excessive solution and membrane overheating, which may reduce membrane useful
life , and loss of process current efficiency.

During the electrolytic cell once-through operation, the nitrate, potassium, and other
nutrients removal rates were proportional to current density and inversely proportional to fluid
velocity. Although the removal of nutrients from potato leachate increase with current density,
operation at current density higher than the limiting one is not recommended due to excessive
solution and membrane overheating. The removal of monovalent ions was found to be higher
than divalent ones, because monovalent ions have higher mobility in solution, as well as, are
more membrane selective than divalent ones. The operation at high fluid velocities reduced the
ion removal capacity per pass, but increases bulk solution-membrane interface mass transfer,
which reduces membrane fouling to extent membrane useful life

Under batch-recirculation operation at constant applied voltage of 4.5 and 8.5 volts, it
was found that the nutrient removal rates were independent of applied voltage, but proportional
to the ions concentration and operating time. The initial nutrients removal rates were found to be
high because of the high initial solution ionic concentration and current density. This operation
appeared to work as a current self-regulating process, because as the leachate becomes depleted
the solution electrical resistance increases, therefore to maintain the constant applied voltage
condition the current is self adjusted to lower values. From material balances it was found that
2.2 moles of oxygen gas and 4.4 moles of hydrogen gas were produced at the electrodes surfaces
per mole of nitrate transferred.
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